

Project Background

The purpose of this project is to support pilot training through the design of a system to improve the way pilots get in and out of F-16 cockpit simulators.

Motivation

Lockheed Martin's current simulators require pilots tomaneuver over the walls or through the rear exit, climbing over expensive components in the simulator.

Objective

- Move cockpit seat fully into and out of cockpit
- **Egress seat 73 inches**
- Allow use by 5th percentile female and 95th percentile male
- Attach to existing cockpit-gurney system
- **Operable during emergency situations (fire/loss of** power)
- Stay within \$2,000 budget

Dome cockpit simulator, currently used in pilot training. The ingress/egress system will be designed to be implemented with this simulator

Ingress and Egress System for F-16 Flight Simulator

Marco Karay • Frank Cullen • Andrew Porter • Andrew Filiault • Daniel Swope Industry Advisor: Mr. Jeff Payne • Faculty Advisor: Dr. Patrick Hollis

Design Constraints

Gurney

Egress system will be mounted on gurney Locks into the cockpit simulator

Cockpit Seat Area

> System must lock seat position here

(in)

Future Work

- **Finalize design for transporting/guiding**
- **Finalize CAD**
- Order all necessary components
- Begin prototyping

Acknowledgements

Thank you to Jeff Payne for his insight and industry input on this project. Also, thank you to Dr. Patrick Hollis for his guidance on our design.

LOCKHEED MARTIN

Intended Design

The flight simulator ingress/egress system will utilize an electric motor to drive the seat. The seat will be mounted to rollers which will fit into steel C – beams to guide the seat along the path.

Displacement Y (WCS)

Max Disp 9.6523E-02 Loadset:LoadSet1 : FEA SD BASE

0.00152
-0.00827
-0.01807
 -0.02786
 -0.03765
-0.04745
 -0.05724
 -0.06704
-0.07683
-0.08662
-0.09642